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1. Introduction

An almost semi-centennial formula by Newmark and Veletsos [1] for the determination of
natural frequencies of simply supported Bernoulli–Euler beams with rotational restrains at the
ends has been discussed recently in Ref. [2] by Maurizi et al. Liu [3] has also established a
simplified formula for restrained cantilever beams. The simplified formula is useful, for example,
in assisting the structural engineers to get a quick estimation of the natural frequencies in the
preliminary design stage. In Ref. [2], the maximum relative errors of the formula by Newmark and
Veletsos were found to be around 2.5% for the fundamental frequency and lower for higher
frequencies. In this letter, improved formulas with reduced relative errors are given.
Consider a simply supported beam with modulus of flexural rigidity EI ; mass density per unit

length rA and span length between supports L: The two ends are simply supported and restrained
by two rotational springs with linear stiffness Kr1 and Kr2 : An end is hinged if Kr ¼ 0 and clamped
if Kr-N:
It can be shown that the exact nth circular natural frequency on for the uniform Bernoulli–

Euler beam is given by

on ¼ l2n

ffiffiffiffiffiffiffiffiffiffiffiffi
EI

rAL4

s
; ð1Þ

where ln is the non-dimensional frequency parameter and is the nth non-zero root of the following
transcendental equation (e.g. Refs. [2,4,5]):

2R1R2j1ðlÞl
2 þ ðR1 þ R2Þj6ðlÞl� j4ðlÞ ¼ 0 ð2Þ
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with

R1 ¼ EI=ðKr1LÞ; R2 ¼ EI=ðKr2LÞ; j1ðlÞ ¼ sinðlÞ sinhðlÞ; ð3aÞ

j4ðlÞ ¼ cosðlÞ coshðlÞ � 1 and j6ðlÞ ¼ sinðlÞ coshðlÞ � sinhðlÞ cosðlÞ: ð3bÞ

The determination of the roots from Eq. (2) for various values of R1 and R2 could be clumsy. It
is desirable to have a simple but yet accurate formula for the evaluation of the natural frequencies
directly.
In Ref. [1], ln is effectively approximated by

ln ¼ p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n þ

1

2

b1
5n þ b1

� �� �
n þ

1

2

b2
5n þ b2

� �� �s
; ð4Þ

where b1 ¼ 1=R1 and b2 ¼ 1=R2:
Maurizi et al. [2] have verified that the above formula is accurate with around 2% in relative

errors and slightly larger in absolute errors. In the following, a more accurate formula is
proposed.

2. Simplified equation

Since the natural frequencies of the restrained beam must lie between the natural frequencies
of a hinged–hinged beam (with ln ¼ np) and a clamped–clamped beam, it is permissible to express
ln as

ln ¼ npþ en ð5Þ

with enX0 and n ¼ 1; 2;y:
In this case, the following simplifications can be made:

sinðlnÞ ¼ ð�1Þn sinðenÞ; cosðlnÞ ¼ ð�1Þn cosðenÞ; ð6aÞ

sinhðlnÞEexpðlnÞ=2; coshðlnÞEexpðlnÞ=2: ð6bÞ

The approximations in Eq. (6b) are very reasonable as expðlnÞ is much bigger than expð�lnÞ: For
example, when l ¼ p; expðlÞ=expð�lÞE535:
As a result, substituting Eq. (6) into Eq. (2), one has

ð�1Þnð2R1R2 sinðenÞl
2
n þ ðR1 þ R2ÞðsinðenÞ � cosðenÞÞln � cosðenÞÞ

expðlnÞ
2

þ 1 ¼ 0: ð7Þ

Again, as expðlnÞ should be much bigger than unity especially for large n; Eq. (7) could be
approximated as

2R1R2 sinðenÞl
2
n þ ðR1 þ R2Þ ðsinðenÞ � cosðenÞÞln � cosðenÞ ¼ 0: ð8Þ

Rearranging the terms, en can be evaluated as

en ¼ tan�1 ðR1 þ R2Þln þ 1

2R1R2l
2
n þ ðR1 þ R2Þln

 !
: ð9Þ
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As ln is not known initially, it can be approximated by np in Eq. (9). Hence, ln in Eq. (5) could be
approximated by

ln ¼ npþ tan�1 ðR1 þ R2Þnpþ 1

2R1R2n2p2 þ ðR1 þ R2Þnp

� �

¼ npþ tan�1 ðb1 þ b2Þnpþ b1b2
2n2p2 þ ðb1 þ b2Þnp

� �
: ð10Þ

The complexity of Eq. (10) is similar to Eq. (4). Both formulas give the exact values for simply
supported beams (i.e., ln ¼ np when b1 ¼ b2 ¼ 0). Table 1 shows the ln for the first five natural
frequencies of various elastically restrained beam obtained by using Eq. (4) (denoted as N–V) and
Eq. (10) (denoted as present). It can be seen that the present approximate formula is more
accurate in general.
For the present formula, the relative errors are less than 0.1% for the third and higher natural

frequencies in general. The maximum relative errors are around 0.3% when b1 and b2 are around
10. For the N–V formula, the maximum errors are also around 0.3% for the third natural
frequencies when the support conditions are close to a clamped–hinged beam. In fact, it has been
shown [6] that ln for the higher natural frequencies for the clamped–hinged and clamped–clamped
beams can be given by ðn þ 1=4Þp and ðn þ 1=2Þp; respectively. The present formula gives the
correct values for these two limiting cases while N–V formula only gives the correct values for the
clamped–clamped conditions.

3. Iteration formula

For the first two natural frequencies, the relative errors are slightly higher. It can be verified that
for the N–V formula, the maximum relative error occurs when b1 is large and b2 is small (i.e.,
close to the clamped–hinged condition). The errors are around 2.5% and 0.7% for the first and
second natural frequencies, respectively. For the present formula, it can be verified that the
relative errors are less than 0.4% and 0.2%, respectively, for the first and second natural
frequencies in general. The maximum error occurs when both b1 and b2 are around 10. The
maximum errors are around 2.0% and 0.7% for the first and second natural frequencies,
respectively.
The main source of errors in the lower frequencies is due to the approximation of ln by np in

Eq. (9). The accuracy can be improved if the following iterations are carried out:

lðiþ1Þ
n ¼ npþ tan�1 ðR1 þ R2Þl

ðiÞ
n þ 1

2R1R2ðl
ðiÞ
n Þ2 þ ðR1 þ R2Þl

ðiÞ
n

 !
; i ¼ 0; 1; 2;y ð11Þ

with lð0Þn ¼ np: Table 2 shows the results obtained by carrying out one and two iterations. It can be
seen that the results can be improved significantly by using just one iteration for b1 ¼ b2 ¼ 10:
It can be verified that by carrying out one iteration, the maximum error still occurs when both

b1 and b2 are around 10. However, the errors are reduced to around 0.5% and 0.03% for the first
and second natural frequencies, respectively. When two iterations are used, the relative error of
the first and second natural frequencies can be further reduced. However, the maximum errors
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now occur when both b1 and b2 are large (i.e., close to the clamped–clamped condition). The
errors are around 0.4% and 0.01% for the first and second natural frequencies, respectively. This
error cannot be reduced easily and is due to the assumption that expðlnÞ is much larger than unity.
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Table 1

Comparison of the frequency parameters l between the exact values, the N–V method and the present method

b1 b2 Mode number

1 2 3 4 5

0 0 3.141593 6.283185 9.424778 12.566371 15.707963 Exact

3.141593 6.283185 9.424778 12.566371 15.707963 Eq. (4) (N–V)

0.00% 0.00% 0.00% 0.00% 0.00% Error

3.141593 6.283185 9.424778 12.566371 15.707963 Eq. (10) (Present)

0.00% 0.00% 0.00% 0.00% 0.00% Error

0.01 10 3.666010 6.688156 9.752074 12.840018 15.942637 Exact

3.629408 6.665157 9.734409 12.825899 15.931101 Eq. (4) (N–V)

�1.00% �0.34% �0.18% �0.11% �0.07% Error

3.693926 6.701113 9.758974 12.844070 15.945200 Eq. (10) (Present)

0.76% 0.19% 0.07% 0.03% 0.02% Error

10 10 4.155664 7.068249 10.065679 13.105264 16.171791 Exact

4.188790 7.068583 10.053096 13.089969 16.156762 Eq. (4) (N–V)

0.80% 0.00% �0.13% �0.12% �0.09% Error

4.243082 7.117450 10.092109 13.120973 16.181800 Eq. (10) (Present)

2.10% 0.70% 0.26% 0.12% 0.06% Error

0 100 3.889185 7.003227 10.118546 13.235413 16.353724 Exact

3.816990 6.960660 10.084634 13.204659 16.324194 Eq. (4) (N–V)

�1.86% �0.61% �0.34% �0.23% �0.18% Error

3.896541 7.009535 10.124258 13.240594 16.358431 Eq. (10) (Present)

0.19% 0.09% 0.06% 0.04% 0.03% Error

1 10 000 4.041438 7.133133 10.255610 13.386423 16.521079 Exact

4.004427 7.103484 10.231712 13.366776 16.504431 Eq. (4) (N–V)

�0.92% �0.42% �0.23% �0.15% �0.10% Error

4.063126 7.141534 10.259571 13.388761 16.522632 Eq. (10) (Present)

0.54% 0.12% 0.04% 0.02% 0.01% Error

10 000 10 000 4.729095 7.851636 10.993412 14.134343 17.275311 Exact

4.711604 7.852412 10.993222 14.134032 17.274842 Eq. (4) (N–V)

�0.37% 0.01% 0.00% 0.00% 0.00% Error

4.711761 7.852726 10.993691 14.134657 17.275623 Eq. (10) (Present)

�0.37% 0.01% 0.00% 0.00% 0.00% Error

N N 4.730041 7.853205 10.995608 14.137165 17.278760 Exact

4.712389 7.853982 10.995574 14.137167 17.278760 Eq. (4) (N–V)

�0.37% 0.01% 0.00% 0.00% 0.00% Error

4.712389 7.853982 10.995574 14.137167 17.278760 Eq. (10) (Present)

�0.37% 0.01% 0.00% 0.00% 0.00% Error
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4. Conclusions

In this letter, an approximate formula for the natural frequencies of simply supported
Bernoulli–Euler beams with rotational restrains at the ends is given. The accuracy is better than
the one given by Newmark and Veletsos in general. Compared to the exact values, the relative
errors of the present formula are less than 0.3% for the third and higher natural frequencies. The
relative errors of the first two natural frequencies are slightly higher and are less than 0.4% in
general, except when the b values are around 10. When the b values are around 10, say 1pbp100;
it is recommended to use one or two iterations to reduce the error to 0.4%.
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Table 2

Comparison of the frequency parameters l between the exact values and the present method with iterations

b1 b2 Mode 1 Mode 2

Exact

solution

Iteration Present

method

Error (%) Exact

solution

Iteration Present

method

Error (%)

0.01 10 3.666010 0 3.693926 0.76 6.688156 0 6.701113 0.19

1 3.664864 �0.03 1 6.687756 �0.01

2 3.666323 0.01 2 6.688171 0.00

10 10 4.155664 0 4.243082 2.10 7.068249 0 7.117450 0.70

1 4.133322 �0.54 1 7.065875 �0.03

2 4.143353 �0.30 2 7.068888 0.01

0 100 3.889185 0 3.896541 0.19 7.003227 0 7.009535 0.09

1 3.889504 0.01 1 7.003173 0.00

2 3.889569 0.01 2 7.003228 0.00

1 10 000 4.041438 0 4.063126 0.54 7.133133 0 7.141534 0.12

1 4.035723 �0.14 1 7.133209 0.00

2 4.036380 �0.13 2 7.133280 0.00

10 000 10 000 4.729095 0 4.711761 �0.37 7.851636 0 7.852726 0.01

1 4.711447 �0.37 1 7.852412 0.01

2 4.711447 �0.37 2 7.852412 0.01
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